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Abstract

& Object perception has been a subject of extensive fMRI
studies in recent years. Yet the nature of the cortical
representation of objects in the human brain remains
controversial. Analyses of fMRI data have traditionally focused
on the activation of individual voxels associated with presenta-
tion of various stimuli. The current analysis approaches
functional imaging data as collective information about the
stimulus. Linking activity in the brain to a stimulus is treated as
a pattern-classification problem. Linear discriminant analysis
was used to reanalyze a set of data originally published by Ishai
et al. (2000), available from the fMRIDC (accession no. 2-2000-

1113D). Results of the new analysis reveal that patterns of
activity that distinguish one category of objects from other
categories are largely independent of one another, both in
terms of the activity and spatial overlap. The information used
to detect objects from phase-scrambled control stimuli is not
essential in distinguishing one object category from another.
Furthermore, performing an object-matching task during the
scan significantly improved the ability to predict objects from
controls, but had minimal effect on object classification,
suggesting that the task-based attentional benefit was non-
specific to object categories. &

INTRODUCTION

The human brain is arguably the most powerful compu-
tational architecture known to humanity and represents
one of nature’s crowning achievements. One of the most
striking aspects of the brain is its seemingly limitless
capacity for representing information. Deservingly, con-
siderable effort has been put forth to understand its
functional and neuroanatomical architectures. Here, we
apply pattern-classification methods to fMRI data in an
effort to further investigate the nature of how catego-
rical information is represented in the brain.

The debate about how categorical information is
represented in the cortex is often summarized into
two competing theories: distributed vs. modular. The
modular viewpoint proposes that the cortex can be
divided into distinct modules dedicated to processing
and representing particular types of information (Fudor,
1983). This view has been supported by evolutionary
considerations and by findings that some neuropsycho-
logical patients exhibited category-specific deficits. In
recent years, more evidence supporting this claim has
come from functional neuroimaging. Cortical regions
were identified that showed preferential activation to
specific categories of information, such as the fusiform
face area (FFA), the parahippocampal place area (PPA),
and more recently, the extrastriate body area (EBA)
(Downing, Jiang, Shuman, & Kanwisher, 2001; Epstein

& Kanwisher 1999; Kanwisher, McDermott, & Chun,
1997). However, there remain strong challenges to this
domain-specificity view. For example, it was shown that
FFA also responded robustly to nonface stimuli in the
form of novel synthetic objects called greebles, leaving
questions as to whether these modules were indeed
category specific (Gauthier, Tarr, Anderson, Skudlarski,
& Gore, 1999). Conversely, the distributed hypothesis
submits that information is diffusely represented in the
cortex. This viewpoint, until recently, lacked strong
evidence in human neuroimaging and principally relied
on evidence drawn from nonhuman primate studies
(Tanaka, 1996, 1997; Wang, Tanaka, & Tanifuji, 1996)
and computational modeling (Rumelhart & McClelland,
1986; Hinton & Anderson, 1981). fMRI evidence sup-
porting the distributed perspective came when it was
reported that previously identified modules in the ven-
tral temporal cortex for faces, houses, and chairs re-
sponded robustly to all three categories of objects (Ishai,
Ungerleider, Martin, & Haxby, 1999). While the response
in these areas to nonpreferred object categories was
smaller than that to the preferred category, it never-
theless was significant. Based on these findings, the
authors proposed the object form topology hypothe-
sis—that object form is represented in the ventral
temporal cortex continuously in a distributed and over-
lapping arrangement.

More recently, it was argued that the smaller response
in ventral temporal cortex to nonpreferred stimuli has a
functionally important role as the response conveysUniversity of Minnesota
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information sufficient to determine the stimulus cate-
gory (Haxby et al., 2001). The argument was based on a
novel classification analysis that predicts the object
category by computing correlations between regression
coefficients for each of the stimulus categories. The
analysis showed that object categories could be pre-
dicted robustly based on responses from the ventral
temporal cortex even after removing areas that re-
sponded maximally to that category. For example, face
stimulus could be distinguished from others based on
activities from ventral areas without FFA. Furthermore,
activity in regions such as the FFA could predict non-
preferred stimuli such as houses and chairs from other
categories of objects.

Addressing the question of how object categories are
represented in the cortex requires establishing a link
between the object category being viewed by the
observer and brain activity. Analysis methods such as
the general linear model (GLM) establish this link by
determining how well a model can account for the
activity in a given voxel (Friston et al., 1995). Haxby
et al.’s (2001) analysis establishes this link by creating a
template of activity for object categories via regression
coefficients, in which the coefficients are simply the
mean activity across time in a subset of scans for each
voxel,1 and using them to predict subsequent func-
tional imaging runs. The current analysis sought to
establish this link in a novel way through the applica-
tion of linear discriminant analysis (LDA).

LDA,2 a traditional form of statistical classification
analysis, was used to understand what features in the
activation vector distinguish different object categories.
Instead of using stimulus category to identify voxels as
significantly active, we seek to find which voxels con-
tribute to the pattern of activity that is indicative of the
stimulus category the observer is viewing. The analysis
produces a spatial map called a ‘‘discriminant’’ or
canonical variant that is a spatial weighting of voxels
that can be used to reliably predict the category of
object presented to the subject based on a single fMRI
time acquisition.

One of the key steps in linking an activation pattern
to object categories is to find areas that respond well
for all members of an object category. This raises a
problem for using mean activation across large spans of
time to characterize object category representation.
Means are notoriously sensitive to outliers, and very
strong responses within a voxel to just a few of the
stimuli within a class can be enough to generate a
significant mean, even though this voxel would have
almost no predictive power for an object category on a
time-point by time-point basis. Thus, mean activations
cannot always distinguish between voxels that code
information about an object category and voxels that
code information about particular stimuli within a class
(feature encoders). To address this, the current analysis
uses individual time acquisitions to test its predictions.

In addition, in contrast to voxel-based methods,
categories of objects will be linked to ‘‘patterns of
activity’’ across the cortex. This is only natural given
that neuronal structures in the brain are highly inter-
connected and given that the object form topology
hypothesis suggests that objects are coded as pattern
of activity in a large-scale distributed network. The
current analysis treats each functional acquisition as a
spatially structured, high-dimensional activation vector
that resides in an activity space. Figure 1A shows the
transformation between activity space and voxel space.
In activity space, the activity in the cortex evoked by
a stimulus is treated as a whole and the significance of
a voxel is based on its importance to the pattern
of activation that distinguishes object categories, as
opposed to how well it correlates with a model of the
expected response.

An additional concern is that the results from tradi-
tional analysis are highly dependent on the control
stimulus. As shown in Figure 1B, two hypothetical areas
are coding two classes of stimuli. In the traditional
sense, the first model is completely modular with the
respective regions becoming active only when the
preferred stimulus is present; the second model is
distributed in that both areas are simultaneously coding
each of the two classes of stimulus. Interestingly, the
only difference between these two models is the loca-
tion of the origin, which is defined by the control
stimulus! The current analysis principally focuses on
activity that defines object categories relative to other
categories of objects. This activity, we would argue, is
more indicative of the categorical representation of
objects as it is defined by their relationship to each
other. In the example of Figure 1B, the relationship
between the two classes of stimulus remains constant
for both models regardless of the location of the origin
as shown by the hypothetical d0 measure.

Prior to the application of the LDA, two preprocess-
ing steps, in addition to those performed by Ishai,
Ungerleider, Martin, Schouten, and Haxby (2000), were
taken to maximize the information associated with
individual time points and to minimize outliers that
would influence the analysis. First, a deconvolution
operation was performed on the data to remove the
lag due to hemodynamic response and decorrelate the
time series data relative to an estimate of the hemody-
namic response function (Boynton et al., 1996). The
second preprocessing step removed outliers from the
data set using a previously described method (Rous-
seeuw & Van Driessen, 1999).

The application of LDA to fMRI data is carried out in
two distinct steps: dimensionality reduction and classi-
fication (Figure 2). Dimensionality reduction consisted
of removing subcortical regions and areas outside of the
brain, and extracting the top 40 principle components in
the data. Next, classification was implemented on the
reduced data. Individual time acquisitions were labeled
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according to stimulus condition (i.e., chairs, faces, and
houses) and a discriminant axis was fit to optimize
classification performance. The fits were validated by
measuring the predictive performance of the linear
classifier using the 632+ bootstrap (Efron et al., 1997),
a leave-one-out resampling procedure.

Patterns of activity were identified that support several
types of discriminations among the three categories of
stimuli (chairs, faces, houses, and phase-scrambled con-
trols). Discriminants for classifying one category of
objects from other categories (e.g., faces vs. chairs and
houses) will be referred to as category-specific discrim-
inants because they rely on category-specific activity to
discriminate between classes of objects. Discriminants
that are effective at classifying objects from their phase-
scrambled controls (e.g., chairs vs. phase-scrambled
chairs) are termed object-control discriminants because
they utilize activities that separate objects from their
controls. In addition, a set of pairwise discriminants
(e.g., faces vs. chairs), which also rely on category-
specific activity, were evaluated to facilitate comparisons
with the results from another classification analysis
(Haxby et al., 2001).

RESULTS

In the following sections, we report results from the LDA
of the Ishai et al. data,3 addressing these three ques-
tions: 1) How well can the fMRI data be used to classify
the stimuli? 2) How much interdependence is there in
the different groups of discriminants? 3) How do the
discriminants interact spatially?

Performances of Linear Discriminants

Classification performances for the discriminants are
shown in Table 1. The discriminants for classifying
one object category versus the other two categories
had a mean performance of 74.7% correct classification
with chance performance at 50% accuracy. Classification
for houses was measurably4 lower than the other two
category-specific discriminants in both the delayed
matching condition and the passive viewing condition.
Mean performance for the pairwise discriminants was
slightly higher at 76.3% accuracy. Discriminant perform-
ance can be interpreted as the degree of ‘‘uniqueness’’
between object categories. The lower performance in

Figure 1. Schematic diagram showing the transformation from voxel space to activity space. (A) Voxel space. Three sample voxels are shown with

different levels of activation in the two conditions. For example, Voxel 2 is positively activated in Condition 1 but negatively activated in Condition 2.

Activity space. The pattern of activity of the three sample voxels is replotted in the activity space with voxels as axes. Each condition can now be
represented by its position in the multidimensional activity space. (B) Spatial invariance in activity space. Two arbitrary categories of objects are

plotted in two coordinate systems. In the modular system, each category of objects activates only a single area. In the distributed system, each

category of objects simultaneously activates both areas. The only difference between the two models is the placement of the origin, which is defined
by the control stimulus.
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distinguishing houses from the other two categories
suggests that houses share more common activity with
the other two classes of objects and therefore less
dissociable. This is also reflected in the performance
of pairwise discriminants with more accurate discrim-
ination between chairs and faces than that of the two
pairwise comparisons involving houses. Interestingly,
the increased cognitive demands of the delayed match-
ing condition did not result in any significant enhance-
ment in the discriminant performance relative to
passive viewing for both the category-specific and the
pairwise discriminants, the two discriminants that rely
on category-specific activity.

Performance for the object-control discriminants was
notably higher than the category-specific discriminants.
This result is expected given that the object-control
discriminants can benefit from shared processes across
categories of objects. General responses to objects
compared to phase-scrambled controls, such as those

found in the lateral occipital areas (Malach et al., 1995),
can contribute to the object-control discriminants.
Object-control classification performance differed by
less than 2% across categories, well within the 95%
bounds on the error of these estimates. There was a
large effect of task demand (delayed matching task vs.
passive viewing) for all three categories of objects. This
is contrasted with the lack of a task demand effect on
the category-specific discriminants. Because the stimuli
used in the original study were all well above threshold
for detection, we do not believe that the subjects had
difficulty distinguishing faces, chairs, and houses from
their phase-scrambled controls in the passive viewing
condition. However, if there were a homunculus sitting
in these subjects’ head and trying to decide whether
the subject just saw an object or a control based on
cortical activity patterns, then the delayed matching
task certainly made the homunculus’s job easier, as it
did for the object-control discriminant. Curiously, the

Figure 2. LDA applied to fMRI
data. There are two basic steps

for the application of discrimi-

nant analysis to functional

imaging data. (A) Data reduc-
tion. A necessary condition for

discriminant analysis is that the

number of predictors be equal
to or less than the number of

data points. Data reduction is

performed in two steps. First,

regions outside the brain and
subcortical regions are masked

and removed. Second, princi-

pal component analysis is used

to further summarize the data
into component processes.

(B) Discriminant analysis.

Principal component eigen-
values for individual time

acquisitions are labeled by

condition (i.e., chairs, faces,

and houses) and projected
onto an N dimensional space,

with N equal to the number of

components (2-D example

shown). Within this space, a
discriminant axis is derived

and Bayesian classification is

performed on the data
projected on this axis.
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delayed matching task did not make the homunculus’s
job any easier in deciding whether the subject just saw
a chair or a face or a house.

Linear Discriminant Knockouts

LDA identifies the patterns of activity that are important
for object classification. It also provides an opportunity
to examine how much of the information are common
between different object categories. Here we introduce
the novel idea of a discriminant knockout (Figure 3).
LDA provides an axis in a multidimensional activity
space, along which the two conditions can be best
separated. What happens when all the information in
the cortex along this axis is destroyed, effectively remov-
ing this axis? If this process is done recursively, one can
remove all the information in the data that can poten-
tially contribute to the discrimination of one category of
stimuli from others. The expected result of such a
manipulation would be the reduction in performance
of the discriminant to the chance levels. More interest-
ing to know is the effect of knocking out one discrim-
inant on the performance of other discriminants, as they
are not necessarily orthogonal to one another. For
example, we can knock out activity in the data that
supports the discrimination of faces against other cate-
gories of objects, creating a ‘‘virtual lesion,’’ and then
evaluate the effect of this manipulation on the perform-
ance of other discriminants.

Results for linear discriminant knockouts for both the
passive viewing and delayed matching conditions are
shown in Figure 3. The dependent measure is relative
loss in performance, which is the change in performance

due to the knockout scaled by the baseline performance
of the discriminant. Results for a discriminant knockout
on the same discriminant represent the amount of
information that needs to be removed to reduce the
discriminant to chance levels (plots marked with stars).
This magnitude provides a baseline that can be used to
compare the effects of the other knockouts on the
discriminant. The difference between knockouts within
a discriminant and knockout of other object categories
indicates the amount of unique activity between the two
categories. For example, in the passive viewing condi-
tion, a chair category-specific knockout for the chair
specific discriminant requires a 23% relative loss in
accuracy to bring the discriminant to chance perform-
ance. In comparison, knocking out the face category-
specific discriminant results in only 6% loss in the
performance of chair specific discriminant. The ratio of
these two numbers (6% vs. 23%) can be viewed as a
measure of shared activity.

Each of the three category-specific knockouts reduced
classification performance for chair, face, and house
specific classifications. These interactions between
the category-specific discriminants show that there are
indeed aspects of the categorical representation, in terms
of activity, that are shared across the three categories of
objects. However, this sharing is not complete. The
differences between the passive viewing and delayed
matching conditions were minimal for category-specific
discriminants, consistent with the previous result that
increased task demands do not affect the discrimination
performance of category-specific discriminants. Interest-
ingly, making one type of objects undiscriminable from
the other objects did not affect the discriminability of the

Table 1. Linear Discriminant Peformance

Category-Specific Discriminants

Chairs vs. Faces and Houses Faces vs. Chairs and Faces Houses vs. Chairs and Houses

Delayed matching 75.1% (2.1) 76.6% (2.0) 70.8% (2.0)

Passive viewing 77.4% (2.1) 75.3% (2.0) 72.8% (2.0)

Pairwise

Chairs vs. Faces Chairs vs. Houses Faces vs. Houses

Delayed matching 80.3% (2.4) 73.2% (2.5) 76.3% (2.5)

Passive viewing 79.2% (2.4) 74.9% (2.4) 73.6% (2.4)

Object-Control Discriminants

Chairs Faces Houses

Delayed matching 98.7% (1.3) 97.4% (1.4) 99.3 (1.0)

Passive viewing 86.3% (2.2) 84.3% (2.3) 84.6 (2.3)

Performance for discriminants reported as percent correct classification (%). Standard errors of the estimate of classification performance are given
in parentheses.
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objects from its scrambled controls. More surprisingly,
the reverse is true, too. For example, one can lesion the
data to the extent that faces are no longer discriminable
from scrambled faces, but faces can still be discriminated
from chairs or houses. This result is interesting in that it
suggests that activity in the cortex that enables the
categorical discrimination of objects is independent of
the information that separates objects from the phase-
scrambled control stimulus.

Although object-control discriminants are highly inde-
pendent of the object-specific discriminants, there seems
to be a significant amount of shared information in
detecting different types of objects from their respective
controls. In all cases, knocking out one object-control
discriminant had a significant effect on all the other
object-control discriminants. The strong interaction
between object-control discriminants reflects the signifi-
cant amount of overlapping processes in object detec-
tion. This is in contrast with the weaker interactions

found between the category-specific knockouts. Taken
together, this pattern of results seems to suggest that
category-specific information is not an essential part of
the process that distinguishes objects from nonobjects.

Spatial Aspects of Categorical Representations

Category-specific Representation in the Cortex

The projection of the category-specific discriminants
onto the cortex reveal that the majority of strongly
weighted voxels were found in the ventral temporal
cortex, confirming the strong contribution of the ventral
temporal cortex for representing object categorical in-
formation. Voxels with significant weights5 were distrib-
uted across the ventral temporal areas in relatively small
clusters corresponding with previously identified cate-
gory selective areas. Interestingly, while the voxels were
distributed there appeared to be very little overlap in the
significant voxels across categories.

Figure 3. Discriminant knock-
outs. (A) Linear discriminant

knockout procedure and

evaluation. Overlap in activity
space is evaluated via linear

discriminant knockouts. Three

categories of stimuli activity

(open circles, filled circles,
and X’s) are plotted in a

two-dimensional space. Initially

discriminant performance

for classifying open versus
closed circles is 80%. A linear

discriminant knockout is then

performed by removing the axis

that separates open circles and
X’s. The original discriminant

(open vs. closed circles) is

then retested yielding 72%
classification accuracy. The

effect of linear discriminant

knockout is evaluated in terms

of relative loss of accuracy,
which is the loss in performance

scaled by the base performance

of the discriminant. (B) Result

of linear discriminant knock-
outs for object-specific and

object-control discriminants for

both the delayed matching and
passive viewing conditions.
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One problem with the aforementioned observation is
that the amount of spatial overlap is a function of the
threshold applied to the map: the two extreme examples
being setting a very low threshold in which the whole
brain is significant, thus there would be a large amount
of overlap between categories; and setting a very high
threshold in which significant voxels would be more
likely to cluster in a modular arrangement. To avoid
setting an arbitrary threshold, we investigated the
relationship between the performance of discriminants
and the amount of spatial overlap independent of
threshold. The number of overlapping voxels and the
discriminant performance are both a function of the
threshold; thus, the common variable can bridge a
direct relationship between classification performance
and the amount of overlapping activation. Discriminant
performance and the percentage of voxels overlapping,
relative to the total number of significant voxels, were
computed for small increments in threshold.6 Figure 4

shows the percentage of the number of active voxels
participating in multiple discriminants as a function of
the discriminant performance. The critical aspect in
these plots is the loss of information as the amount
of spatial overlap decreases. A decrease in performance
coupled with a reduction in the percentage of over-
lapping voxels indicates the thresholding of voxels that
are both important to the prediction and shared across
categories. The first two rows in the figure show that
the number of shared voxels critical to all three object
categories discriminants is relatively small. There was
some variation across subjects. Subjects 2 and 3 show
only a minimal loss in performance as the amount
of overlap drops (indicating minimal information in
the shared voxels), while other subjects show sharp
decreases in performance when the overlap fell below
between 4% and 12% (indicating critical information are
carried in those shared voxels). The amount of overlap
in voxels for pairwise object-specific discriminants was

Figure 4. Spatial overlap of
category specific process.

(A) Discriminant performance

shown as a function of the
number of voxels participating

in the prediction via threshold-

ing. (B) Voxels are binned

according to their participation
in the discriminants. Seven

bins, shown on the Venn dia-

gram, were used to encompass

all possibilities (chair only, face
only, house only, chairs and

faces, chairs and houses, faces

and houses, and all three cate-

gories). (C) The relationship
between discriminant perfor-

mance and spatial overlap

evaluated independent of
threshold. Discriminant perfor-

mance and the number of

overlapping voxels are both a

function of threshold (see A
and B). The shared axis allows

for the direct comparison of

overlapping activation and clas-

sification performance. Discri-
minant performance for object

categories, chairs (blue), faces

(red), and houses (green) are
shown as a function of the

percentage of overlapping vox-

els. The percentage of over-

lapping voxels is calculated
relative to the number of voxels

surviving threshold. Thus, while

increasing the threshold will

reduce the total number of
voxels considered, the percen-

tage of overlapping voxels can

go up or down depending on
the type of voxels remaining

after thresholding.
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larger. Again, these thresholds did vary across subjects
and comparisons, but the percentage of overlapping
voxels was generally quite small.

Spatial Aspects of Object-Control Discriminants

Voxels contributing significantly to the object-control
discriminants were found in occipital, temporal, and
parietal lobes. Given that these discriminants essentially
detect differences between objects and noise and are
likely to encompass many cortical processes, a complete
interpretation of them requires more constraints than
available in this data set. Thus, we focus our attention
on the differences between the passive viewing and
delayed matching tasks that was shown earlier to have
an important effect on this discrimination. Under the
same threshold, the discriminants for the passive view-
ing condition had considerably fewer significant voxels
than that in the delayed matching condition. Discrim-
inants in the delayed matching condition both recruited
new areas of the cortex and expanded regions identified
by the passive viewing task. This is not surprising given
the increased cognitive demands presumably would
require additional processes and enhance processes
already occurring in the passive viewing condition. This
result, however, highlights the difficulty in interpreting
fMRI data. For example, the use of an attention task will
often result in more robust responses to the stimuli;
however, the observed activation is a combined effect of
stimulus and the task.

DISCUSSION

A well-designed functional imaging study provides a
wealth of information. The data set submitted by Ishai
et al. (1999, 2000) serves as an excellent example of this;
as the group has already reported two analyses based on
this data set, the current one represents yet another.
One of the benefits of performing a reanalysis on a
previously published data set is the opportunity to
contrast the different analyses and compare the results.

In this reanalysis, we take seriously the idea that the
analyses should explicitly look for ‘‘patterns of activity’’
that are meaningful, treating voxels as axes in a multi-
dimensional activity space, rather than independently. In
doing so, our analysis can more directly investigate
hypotheses involving distributed and focal representa-
tions. The distributed hypothesis suggests that patterns
of activation across the cortex can be used to support
different kinds of information. The modular perspective
argues that these patterns largely be confined to partic-
ular areas. Using LDA in activity space, we can simulta-
neously and empirically investigate the evidence for
both kinds of hypothesis.

The current analysis focused on two types of linear
discriminants: category-specific and object-control. First,

with category-specific discriminants, activity specific to
object categories was isolated by contrasting one object
class with the other two classes of objects. It is important
to note, however, that the activity we define as category
specific is limited by the number of categories. For
example, a pairwise discriminant for two object categories
cannot be identified as specific to either object category.
In the current study, there are only three categories of
objects. Additional research must be performed to fur-
ther constrain the detection of object-specific activity.
Second, with object-control discriminants, activity critical
for detecting objects was determined by contrasting
an object class and its phase-scrambled control. A key
difference between these two types of discriminants is
that shared activities across object categories will not
contribute to the category-specific discriminants, but
they could be important to the object-control discrim-
inants. Our analyses found that these two types of pro-
cessing evoke patterns of activity in the cortex that are
relatively independent of one another, and are differ-
entially influenced by the task demands.

Overlapping Representation between Different
Object Categories

Category-specific discriminants can be used to find
patterns of activity unique to a category of objects, and
as such can be used to address the issue of how object
categories are represented in the cortex. The ability to
predict the stimulus presented to subjects based on
derived category-specific discriminants shows that there
are patterns of activity in the cortex unique to each of
the three categories of objects that are linearly separa-
ble. The weak interactions found after the discriminant
knockouts, however, reveal that only a small proportion
of the categorical representation of these three objects
is shared. Our analysis also found that the category-
specific activity is largely confined to the specific regions
with very little spatial overlap across categories. On the
same issue, Ishai et al. (1999) and Haxby et al. (2001),
among others, have demonstrated that object-selective
regions do respond to nonpreferred stimuli and pro-
posed the object form topology hypothesis to account
for these results. The results of our analysis showing
independent category-specific information, on the sur-
face may seem to contradict their hypothesis. How can
this be reconciled, especially given that both analyses
were performed on the same data? The answer is that
the two analyses are looking at two different aspects of
the data. In our analysis, activities shared across object
categories do not contribute to the object-specific dis-
criminants, as it contains no useful information to differ-
entiate between categories of objects. Ishai et al.’s
analysis includes this activity and labels it as a compo-
nent of the distributed representation. The interpreta-
tion of this activity is a question that we feel remains
open and could be addressed in future research.
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Object Detection Versus Object Category
Classification

The object-control discriminants reflect the activities
associated with the general processes of detecting an
object. The behavior of object detection discriminants
was very different from the category-specific discrimi-
nants. First, classification performance was much higher
for object-control discriminants. The result is expected
given that many areas are responsive to objects but not
to scrambled controls (Grill-Spector et al., 1998; Grill-
Spector, Kourtzi, & Kanwisher, 2001; Malach et al.,
1995), and all of the activity in these areas can contribute
to the object-control discriminant. On the other hand, a
relatively smaller number of voxels have a differential
response for the three categories and are capable of
contributing to the category-specific discriminants.

Interestingly, task demands and attention had very
little effect on the performance of category-specific dis-
criminants and also had negligible effect on the knock-
outs across the category-specific discriminants. Previous
studies have shown that attention could enhance activity
in object responsive regions (O’Craven, Downing, &
Kanwisher, 1999), and enhancement of response magni-
tude from the matching task is evident in the current
data set (Ishai et al., 2000). The result of our reanalysis
suggests that the delayed matching task simply boosted
object-related activities, but the benefit was not specific
to any particular object category. Given this, it would
seem that care must be taken when interpreting the
effects of task. While attentional tasks may change acti-
vation magnitude, the pattern of activation relevant to
the stimulus may not change. Studies that assess activa-
tion significance using the baseline provided by a control
stimulus may also suffer from the possibility that the
effect of task is predominantly due to changes in the
processing of the control rather than in the test stimuli.

Differences between Linear Discriminants and
Correlational Analysis

The classification performances of the derived linear
discriminants were found to be robust, but substantially
lower than that found by Haxby et al. (2001) using a
correlation classification method. The performance for
our pairwise discriminants ranged from 73.2% to 83% in
the delayed matching condition, while Haxby et al.
(2001) reported near perfect classification for these
three classes of objects. This difference is to be expected
for several reasons. First, our analysis attempts a much
more difficult prediction: Decisions were made for each
individual time acquisition rather than for regression
coefficients derived from half the total acquisitions. For
block designs like Haxby et al.’s, least square regression
coefficients are category means across time for each
voxel (see the Appendix). In Haxby et al.’s analysis, the
prediction performance is limited by the variability of
these means, rather than the variability of individual

time acquisitions. If we replaced individual time points
with means across half the points (41 time points) in a
group, and we assume for the sake of argument that all
of these time points are independent, then a d0 measure
of performance would increase by a factor of

p
41. For

all of our comparisons, such an increase would put
performance in terms of percent correct at ceiling.
Adjusting for the fact that the time points are not
independent predicts a smaller gain; however, it would
require averaging only four independent time points to
drive all our performance values over 95%. Thus, the
near-perfect performance reported in Haxby et al.
(2001) primarily owes to the statistical advantage of
classifying averages rather than individual acquisitions.

Although averaging can potentially explain the differ-
ences in performance, there exists an interesting rela-
tionship between Haxby et al.’s (2001) analysis and LDA
(see the Appendix). We show that Haxby et al.’s analysis
classifies the group means across half the data by
projecting onto an axis given by the differences between
normalized class means computed on the other half of
the data. When the class means are all roughly equal
(true for the data we analyzed) this procedure simply
uses the differences between group means as an axis.
LDA uses the differences in means as a discriminant, but
it reweights the voxel axes using the data covariance to
reduce the contribution of voxel axes with high varia-
bility. Because Haxby et al.’s analysis does not factor out
voxels with high variability and because they classify
means, their analysis confers predictive significance to
voxels that are too variable to support classification in
our analysis. Thus, we see one of the key advantages of
LDA is that it provides a method for computing and
incorporating voxel reliability in the predictions.

Benefits of LDA Analysis

Although more powerful classification methods exist,
Fisher’s LDA has the advantages of simplicity and ease
of interpretation. More powerful classification methods
involve creating (potentially complicated) regions of
activity space associated with a stimulus category. How-
ever, regions of activity are difficult to visualize and
interpret, requiring a different activity map for each point
in the region. In contrast, Fisher’s LDA provides a single
axis of voxel weights that provide a direct measure of the
voxel’s contribution to the classification. We believe this
gain in interpretability offsets its suboptimality. (Fisher’s
LDA is only guaranteed optimal when the distribution of
brain responses to a category can be modeled as a multi-
dimensional Gaussian and when the response covarian-
ces for each category are equal, although it can be optimal
or almost optimal for other cases.)

General Discussion

In summary, the current article used robust PCA, Fisher’s
LDA, and a Bayesian classifier to address the question of
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categorical object representations. We found that activ-
ity in the cortex that defines object categories relative to
other categories of objects is independent of activity
that defines an object category relative to a control
stimulus. The attentional benefit of using a delayed
matching task acts principally on nonspecific object
processes. We found modest amounts of overlap, both
in terms of activity and spatial overlap, between object-
specific activity; however, the magnitude of the overlap
seems to be insufficient to support the continuous
topological arrangement that has been proposed (Ishai
et al., 1999).

In addition, we sought to highlight the benefits of this
new approach in examining functional imaging data. One
key idea in our analysis is that activation patterns can be
decomposed into components, some of which are more
informative with respect to particular stimulus catego-
ries, and LDA can be used to extract these informative
components. A second important concept is that of
activity space in which voxels, not acting alone and
without spatial constraint, can participate in concert for
representing and processing of information. Given the
highly interconnected nature of the brain, it is our belief
that this brain-based analysis method holds promise for
future functional imaging research.

METHODS

Data set

Data were acquired from the fMRIDC database (acces-
sion no. 2-2000-1113D) (Ishai et al., 2000). A summary of
the relevant information from the original study will be
presented below to facilitate interpretation of the results
(for detailed methods see Ishai et al., 2000).

Subjects

Six right-handed subjects with normal vision participated
in the experiment. One subject’s data (Subject 9) had
compression errors that resulted in a significant loss of
data. The remaining five subjects represent the data
subjected to the analysis presented in this report.

Stimuli

Stimuli were gray-scale photographs of faces, houses,
and chairs presented on a gray background. Control
stimuli for the photographs were phase-scrambled im-
ages of the respective stimuli that preserved spatial
frequency information.

Experimental Procedure

Subjects performed one of two tasks, a delayed match-
ing and passive viewing task. Stimuli presented during
passive viewing were presented at a rate of two photo-
graphs per second. In the delayed matching task, target

stimuli were presented for 1.5 sec, then after a delay of
0.5 sec two alternative stimuli were presented for 2 sec.
Subjects made a keypress response to indicate their
choice. Task difficulty was equated across the object
categories, which was confirmed both during functional,
imaging acquisition and psychophysically. The subjects
task, delayed matching and passive viewing alternated
between runs. Each run consisted of alternating 21-sec
block class of a stimulus category (houses, faces, chairs)
followed by a 21-sec block of the respective phase-
scrambled control. Two blocks of each of the three
classes of objects were presented in each run and were
counterbalanced across a total of six runs for each of the
experimental conditions.

Data Acquisition

A 1.5-T General Electric Signa scanner with a whole
head RFD coil was used for data acquisition. Eighteen
contiguous coronal slices were obtained during func-
tional acquisitions (TR = 3 sec, TE = 40 msec, FOV =
20 cm, 64 � 64 matrix, voxel size 3.125 � 3.125 � 5 mm).
For each subject, a high-resolution whole head anatom-
ical was acquired in a separate session (124, 1.5-mm
thick sagittal slices, TR = 13.9, TE = 5.3, FOV = 24 cm,
256 � 256 matrix).

Data Preprocessing by Ishai et al.

The acquired data set were EPI scan volumes registered
with an iterative method (Woods, Mazziotta, & Cherry,
1993), spatially smoothed in plane with a gaussian filter
(FWHM was 3.75 mm along the x- and y-axis), and ratio
normalized to the same mean global intensity.

Additional Data Preprocessing

To prepare the data for LDA two additional preprocess-
ing steps were taken. A voxel-by-voxel deconvolution
operation was performed on individual run acquisitions
to remove the effects of hemodynamic blurring and
facilitate labeling of time points. The deconvolution filter
was given by a gamma function:

hðtÞ ¼ ðt=tÞn�1

t�ðn � 1Þ expð�t=tÞ

using parameter values (n = 3, t = 1.25) in good
agreement with empirical measures (Boynton et al.,
1996). It is important to note that this operation is
certain to be imperfect given the complexities of the
relationship between the MR signal and the neural
response; thus, local correlations between adjacent time
acquisitions may still exist. Each of the runs was then
normalized and the voxel-by-voxel mean was removed.
The six experimental runs, for each of the experimental
tasks, were then appended into a single volume time
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course. Two data-reduction methods were used to
reduce the number of variables below the number of
recorded time samples. Initially, the dimensionality of
the data equals the number of voxels. Thus, each time
acquisition has 73,728 (64 � 64 � 18) dimensions.
Voxels in subcortical regions and areas outside the brain
were masked and excluded from further analysis, which
removed approximately 80% of the total voxels. Next,
principle component analysis was performed using
singular value decomposition (SVD) to further reduce
the dimensionality of the data into component variables
less than the 84 time samples (7 acquisitions per block
� 2 blocks per run � 6 runs = 84 acquisitions per
object category). Friston et al. (1993) have suggested
retention of all components whose variance is greater
than the mean variance. However, we found this
procedure retained too many components for this data
set, yielding overfit and lack of generalization (see also
Ardekani et al., 1998). We used 40 components,
approximately half the number of time samples for a
class of objects, which was sufficient to capture 80–85%
of the total variance in the data. The use of additional
components had negligible impact on predictive
performance of our classifiers.

Linear Discriminant Analysis

Each time acquisition was given one of six labels accord-
ing to its corresponding stimulus type (chairs, faces,
houses, chairs–noise, faces–noise, houses–noise). Let X
denote the data matrix, with rows given by the masked
voxels and columns representing the time samples. As
noted above, we performed dimensionality reduction by
projecting X onto the principal components basis B
yielding a reduced data matrix:

Y ¼ B X

LDA produces a set of orthogonal axes in the data space
termed canonical variates or discriminants that best
separate class means given the within-class covariance.

The fit is only meaningful if it can be validated against
overfit. We validated the fits by measuring the predictive
performance of the linear classifer using the 632+ boot-
strap (Efron et al., 1997), a state-of-the-art, leave-one-
out, resampling procedure. In this procedure, each time
point is removed from the data set. The discriminant is
fit using a random subset of the remaining data, and the
time point of interest is then subsequently classified. By
repeating this procedure for numerous random subsets
and all the time points, we obtain a measure of the
generalizability of the classifier that mitigates against
overfitting. It is important to note that individual time
acquisitions are tested using data from within the same
block, data from other blocks within the same run, and
data from separate run acquisitions, which results in
83% of the data coming from separate run acquisitions
and the vast majority coming from different blocks

(94%). This is important in that the effect of temporal
correlations remaining after the deconvolution opera-
tion are minimized because the majority of the informa-
tion used to fit the discriminant comes from acquisitions
in separate runs.

The number of distinct discriminants is one less than
the number of classes compared. For two class compar-
isons, the discriminant L has a particularly simple form:

L ¼ �ð�1 þ �2Þ�1ðA1 � A2Þ

where Ai and �i are the mean and covariance of the ith
group. Thus, the best direction to distinguish two
classes is the direction along the difference between
the means, reweighted by the inverse sum of the within-
class covariances. Because mean and covariance esti-
mates are extremely susceptible to contamination by
outliers, we computed robust estimates of the mean and
covariance using Rousseeuw & Van Driessen’s (1999)
minimum covariance determinant method. The robust
estimates resulted in approximately 10% of the time
points in each class being rejected as outliers.

For each of the conditions in the experiment,
delayed matching and passive viewing discriminants
were derived to identify patterns of activation significant
to objects classes. Comparisons included testing each
object class against the respective phase-scrambled
control, each object class versus the other two object
classes (houses vs. faces and chairs, faces vs. houses and
chairs, and chairs vs. houses and faces), and pairwise
contrasts containing all possible permutations of the
three object categories.

Prediction Error

Although LDA provides axes that best distinguish
classes, it does not directly provide a measure of the
classification performance (Kustra & Strother, 2001).
However, if we assume that the data are well described
by a multivariate Gaussian distribution,7 we can perform
classification within a Bayesian framework.

Given we project the data onto the linear discriminant
vector L, the data given the class-conditional distribution
of the projected data are given by:

Pðzi j i; Ai;�iÞ ¼
1

C
exp � 1

2
zT

i ðL
T�iLÞ�1zi

� �

where C is a normalization constant and zi = LT ( yi �
Ai). Classification response is then based on the ratio of
posterior distributions

r ¼ Pðzi j i; Ai;�iÞpi

Pðzj j j; Aj;�jÞpj

where pi represents the prior probability of the class,
and class i is chosen over class j when r is greater than
one. Because we used data to derive our discriminant, it
is important to have a procedure to test the data that is
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not part of the training set, to test predictability. We
estimated the prediction error using the 632+ bootstrap
procedure (Efron & Tibshirani, 1997), in which testing
is performed on a set of data points excluded from
the training via resampling. Prediction (classification)
accuracy is reported as the ratio of the correct clas-
sification of labeled time points to the total number of
time points tested.

Discriminant Knockout

In order to test how much of the discrimination for
one pair of classes is affected by the removal of the
directions required to discriminate another pair, we
systematically ‘‘knocked out’’ via projection the best
discriminants for a pair of classes until prediction
performance was within 5% of chance. Knockouts were
performed via a simple matrix, constructed as follows.
An orthogonal basis was constructed from the discrim-
inant axis using SVD:

L ¼ USVt

If L is an N length column vector, the matrix U is an N by
N orthonormal rotation matrix that has L as its first
column. We construct a new matrix Ud by replacing the
first column with zeros. Then the knockout matrix KL is
given by:

KL ¼ Ut Ud

Multiplying y by the reduced data matrix KL resulted in a
new data set in which the discriminant axis is removed
via projection.

Spatial Overlap

Spatial overlap between discriminants was computed as
the ratio of the intersection and the union of nonzero
voxels that survive a thresholding procedure. The voxels
vm significant for a discriminant were computed as:

vm ¼ v
dðvÞ

maxðdÞ > g

����
�
;

�

where d = BL is the discriminant L transformed back
into voxel space and g is the threshold. In words, the
discriminants were scaled between �1 and 1 and the
voxels greater than the threshold were selected. Using
the same threshold for all the discriminants, the pro-
portion overlap is computed as the ratio of the number
of surviving voxels in the intersection to the union of the
discriminants. Thus, for discriminants j and k, the
proportion overlap pv is given by:

pv ¼ #ðv j
m \ v k

mÞ
#ðv j

m [ v k
mÞ

In addition, for each g the prediction accuracy could be
computed by thresholding the discriminant (setting to

zero all voxels whose absolute value is less than the
threshold) and recomputing the prediction accuracy for
each value. The overlap plots were generated by plotting
proportion overlap against the recomputed prediction
accuracy for corresponding values of the threshold as
the threshold varied from 0 to 1.

APPENDIX: RELATIONS BETWEEN THE
ANALYSIS IN HAXBY ET AL. (2001) AND LDA

Let X denote the data matrix as above. For a voxel-wise
regression analysis, a model of the form

Xn ¼ Gbn

is fit, where Xn is the nth voxel’s time series, G is a matrix of
regressors in which each column is a vector that models the
expected temporal response to one of the stimuli, and b is the
vector of regression coefficients. The least square estimate of
bn is given by:

bn ¼ ðGT GÞ�1 GT Xn

When the regressors in G are nonoverlapping blocks,8 then the
regression coefficients are weighted averages of the time
points associated with each class. For example, in an experi-
ment with two stimulus classes, stimulus class a presented in
the first half of 2n time points and stimulus b in the second
half, then the regression matrix would look like:

G ¼

a1 0

a2 0

: :

: :

0 bn�1

0 bn

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

¼
a 0

0 b

0
@

1
A

where a and b are length n vectors of ones. In this case, the
matrix pseudoinverse (GTG)�1GT reduces to

ðGTGÞ�1GT ¼
aT

kak2 0

0 bT

kbk2

0
@

1
A ¼

wa 0

0 wb

0
@

1
A

where wa = (1/n, 1/n, . . ., 1/n, 0, . . ., 0) and wb= (0, . . ., 0, 1/n,
1/n, . . ., 1/n) when a and b are vectors of ones.

Thus, for nonoverlapping blocks,

ba
n ¼ ðwa0Þ  X n ¼ wa  X a

n ¼ Aa
n

where the last equality only holds for wa = (1/n, 1/n, . . ., 1/n,
0, . . ., 0). However, the result is that the regression coeffi-
cient for the nth voxel for a stimulus class a is just the
(weighted) average of the time points in which stimulus class
a was presented.

The correlation-based prediction used by Haxby et al. (2001)
can be related to the LDA procedure. Specifically, the correla-
tion measure they use can be viewed as the expectation of a
discriminant that is given by the difference between normal-
ized class means. The correlation measure, where angle brack-
ets denote an inner product across voxels, the spatial
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correlation between the regression coefficients for classes a
and b is given by:

rab ¼ hba;bbiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hba;baihbb;bbi

p ¼ hAa; Abi
k Aa k  k Ab k

For pairwise comparisons, their classification procedure
involves comparing the correlations between classes a and b
versus within classes on odd and even runs. Specifically, they
compute four correlations: roe

aa; r
oe
ab; r

eo
ab; r

oe
bb, where the sub-

scripts denote the first and second classes, and the superscripts
whether the regression coefficients were computed from odd
or even runs (o or e). For example, roe

ab is the correlation
coefficient between regression coefficients computed for class
a from odd runs, and class b from even runs. They consider four
comparisons, roe

aa > roe
ab; r

oe
aa > reo

ab; r
eo
ab < roe

bb; r
oe
ab < roe

bb, and
the predictive performance for each subject was computed as
the proportion of these pairwise comparisons that had the
relationship indicated by the inequality signs. Each one of these
comparisons is equivalent to comparing whether the difference
between the correlations is greater or less than zero:

roe
aa > roe

ab ¼ roe
aa � roe

ab > 0

¼ Ao
a

k Ao
a k ;

Ae
a

k Ae
a k

� �
� Aa

o

k Aa
o k ;

Ae
b

k Ae
b k

� �
> 0

¼ Ao
a

k Ao
a k ;

Ae
a

k Ae
a k �

Ae
b

k Ae
b k

� �
> 0

¼ Ao
a

k Ao
a k ;wab

� �
> 0

¼ 1

k Ao
a kEt hwab; X o

ai
� �

> 0

where Et denotes a temporal average. When the class means
are equal in magnitude, the normalization constants factor
out and the procedure is equivalent to using the difference
between class means (wab) as a discriminant axis, followed
by taking a temporal average. For the data set reanalyzed in
this paper, the group mean magnitudes were almost equal.
In addition, the classification step is a special case of the
Bayesian classifier assuming equal class probabilities and
class covariances.
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Notes

1. Least square regression coefficients were determined via
the pseudoinverse of the matrix of regressors. When the
regressors are nonoverlapping temporal functions, which is
true of most block fMRI designs, then this pseudoinverse
solution is a weighted average of the time points where the

weights are produced by the temporal filter used to model
the hemodynamics. The weighted average reduces to a
simple average when the regressors are box functions. See
the Appendix.
2. For those who are not familiar with linear discriminant
analysis, a good introduction can be found in Duda, Hart, and
Stork (2001).
3. A brief description of the experimental paradigm, data
collection, and preprocessing procedures can be found in the
Methods section. However, since this is a reanalysis of
published data, readers are referred to the original paper for
more detailed descriptions (Ishai et al., 2000).
4. Assessed by comparing overlap in 95% confidence intervals.
5. Assessed via thresholding, described below.
6. Spatial maps were scaled with minimum threshold of 0
and a maximum threshold of 1. Discriminant maps, using
the aforementioned scale, were computed for 0.03 incre-
ments in threshold.
7. Data scatter for each class was well approximated by a
multivariate Gaussian distribution. Deviations from a Gaussian
distribution were tested using the method described in
Rousseeuw & Van Driessen (1999), which assesses the
existence of a linear relationship between robust and regular
Mahalobis distances of individual samples from the mean. The
average correlation coefficient of this linear relationship was
0.897 with a standard deviation of 0.029.
8. Block overlap makes results in the overlapping time points
to contribute to several categories. For a small number of
overlapping points, the results for nonoverlapping blocks are
still approximately valid.
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